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If the no-slip condition is used to determine the flow produced when a fluid inter- 
face moves along a solid boundary, a non-integrable stress is obtained. In  part 1 
of this study (Hocking 1976), it  was argued that, when allowance was made for the 
presence of irregularities on the solid boundary, an effective slip coefficient could 
be found, which might remove the difficulty. 

This paper examines the effect of a slip coefficient on the flow in the neighbour- 
hood of the contact 1ine.Particular cases which are solved in detail are liquid-gas 
interfaces a t  an arbitrary angle, and normal contact of fluids of arbitrary vis- 
cosity. The contribution of the vicinity of the contact line to the force on the 
boundary is obtained. 

The inner region, near the contact line, must be matched with an outer flow, 
in which the no-slip condition can be applied, in order to obtain the total value of 
the force on the boundary. This force is determined for the flow of two fluids 
between parallel plates and in a pipe, with a plane interface. The enhanced resist- 
ance produced by the presence of the interface is calculated, and it is shown to be 
equivalent to an increase in the length of the column of fluid by a small multiple 
of the pipe radius. 

1. Introduction 
When the motion in the vicinity of a moving contact line between two fluids 

and a solid boundary is analysed, the stress on the boundary is found to have a 
non-integrable singularity. This unrealistic prediction has been discussed by 
Huh & Scriven (1971) and by Dussan V. & Davis (1974), and it appears to be 
inescapable if the Navier-Stokes equations and the no-slip boundary condition 
are assumed to provide an adequately reliable model throughout the flow region. 
It is, of course, unreasonable to continue to apply a continuum model at  distances 
from the contact line of molecular dimensions. Thus an inner region, close to the 
contact line, could be examined, where the molecular interactions between the 
two fluids and the solid must be studied, and this region matched to an outer 
region, where the Navier-Stokes equations would apply. Such an analysis would 
be very difficult, but it has been suggested that the likely outcome would be 
equivalent to replacing the no-slip boundary condition by a slip condition, and 
continuing to employ the Navier-Stokes equations. Such a prescription would 
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not give anything like a complete analysis of the flow, but it might be sufficient 
to determine such overall features as the total stress sustained by the solid 
boundary. A similar method has been used in rarefied gas flow, but there the 
procedure can be justified to some extent, and the slip coefficient quantified. No 
such justification appears possible in the problem of a moving contact line, and 
the postulated slip coefficient has no rational basis; all that can be said is that it  
would have to be of molecular size (the slip coefficient has the dimensions of 
length) . 

An alternative approach was presented in part 1 (Hocking 1976). The solid 
boundary, which has been assumed to be a geometrical plane, is in reality subject 
to  surface irregularities. These dips and hollows are usually on a scale consider- 
ably larger than the molecular scale, and part I showed that it was possible to 
model the effect of these surface irregularities by replacing the real surface by a 
geometrical plane and imposing a slip boundary condition. The essential point is 
that the displaced fluid continues to occupy the hollows on the surface, so that the 
displacing fluid is moving over a partly fluid surface. Moreover, for particularly 
simple corrugated surfaces, an effective slip coefficient was calculated, its size 
being related in a complicated manner to the dimensions of the hollows as well as 
to the viscosities of the two fluids. 

Although the replacement of the usual no-slip boundary condition by a slip 
condition, whether for non-continuum reasons or because of surface irregularities, 
does not have a rational basis, studying a problem involving a moving contact 
line under this condition would seem to be justified. There is no suggestion, of 
course, that the slip condition is relevant to all circumstances. The size of the 
coefficient is sufficient to imply that it can be ignored except in circumstances 
where the no-slip condition predicts unbounded stresses. In  other words, we have 
a standard singular perturbation problem. For the outer solution, a t  distances 
from the contact line large compared with the slip coefficient, the governing 
equations are theNavier-Stokes equation and theno-slip condition. For the inner 
solution, at  distances from the contact line comparable to the slip coefficient, the 
slip boundary condition must be applied. The matching of the inner and outer 
solutions will then yield an expression for the force on the solid boundary pro- 
duced by the passage of the two fluids along it. As will be shown later, this force is 
finite, but with a logarithmic dependence on the slip coefficient. Although the slip 
coefficient based on molecular effects might be three orders of magnitude smaller 
than one based on surface irregularities, the additional contribution to the force 
from the motion near the contact line would be increased by only a factor of seven. 
Also, this part of the force might only be a small fraction of the total force on the 
boundary produced by the motion of the fluids on parts of the boundary far from 
the contact line, so that experimental discrimination between the two possible 
types of slip coefficient would not be straightforward. 

The inner problem is formulated with some generality in $2, and particular 
cases are examined in $0 3 and 4. The matching between inner and outer solutions 
is described in $5, and the outer solutions are then found for flow between parallel 
planes in $ 6 and for flow in a pipe in Q 7. 
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6= 0 

FIGURE 1. Definition sketch for the flou- perpendicular to the contact line C .  

2. The inner region 
The motion in the vicinity of the contact line between the fluid interface and 

the solid boundary is analysed here under the following assumptions. The scale of 
the region where slip is important, measured by the size of the slip coefficient, is 
small compared with the other length scales of the flow; in particular, this implies 
that the boundary is locally plane. The Reynolds number based on this small 
length scale is small enough for the Stokes equations to be used. The interface is 
plane and is moving with constant speed U in a, direction perpendicular to its line 
of contact with the solid boundary, so that the flow is locally two-dimensional. 

It is convenient to use a co-ordinate frame moving with the interface. Polar 
co-ordinates (r,  8)  in the plane of the motion are defined such that the origin is on 
the contact line and the interface is in the plane 0 = 0. The sector 0 < 8 < a, is 
occupied by fluid of viscosity p1 and the motion there is given by the stream 
function 'Yl(r, 19); the other fluid, for which the stream function is Y z ( r ,  8 )  and 
which has viscosity pz, occupies the sector 0 > 8 > az,  where a2 = al -T .  The 
two parts of the plane solid boundary on either side of the contact line are given 
by 0 = a, and 6' = az (see figure 1). The stream functions satisfy the biharmonic 
equation 

(2 .1 )  

and the boundary conditions are 

Y,(r,  0) = Y,(r ,  a,) = Y z ( r ,  0) = Y z ( r ,  a2) = 0, (2 .2 )  

(2.3) a y l ( r ,  o)/ae = a y 2 ( r ,  o)/as, p1 aZylp,  o)/asz = p z a ~ ~ 2 ( r ,  o)/aez, 

(2 .4a )  

(2 .4b)  

Conditions (2.2) ensure that the solid boundary and the interface are streamlines, 
and (2.3) represents continuity of velocity and tangential stress across the inter- 
face. The slip conditions at  the solid boundary are given by (2 .4 )  and c1 and cz are 
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the slip coefficients for the two fluid-solid contacts. The assumption that the 
interface is plane is equivalent to the presence of a surface tension between the 
two fluids which is sufficiently large to accommodate the normal-stress imbalance 
across the interface with a negligibly small curvature (see the discussion on the 
validity of this assumption in Huh & Scriven (1971) and in part I). 

With c, = c2 = 0, the solution of these equations has the simple similarity form 

v, = U r i W ) ,  YpZ = U$2(@, (2.5) 
with 

$ i ( ~ )  = ai B sin (e  - at) + b,(e - ai) sin 8, i = 1,2. (2 .6 )  

Conditions (2.2) are satisfied by this choice of solution, and the remaining condi- 
tions determine the four coefficients in (2 .6 ) .  Equivalent expressions were ob- 
tained by Huh & Scriven (1971), who presented a number of examples of stream- 
line patterns. The tangential stresses on the boundary, in a direction opposing the 
motion of the boundary, are given by 

LI 

r1 = p1 Ur-lg,, r2 = p2 ~ r - l t t ~ ,  ( 2 . 7 )  
where 

D& = 2p1 sin2 a, (sin2 a2 - a:) - 2p2 sin2 01, (sin2 a2 - a, a2), 

Dk2 = 2p2 sin2 a2 (sin2 a, - a;) - 2p1 sin2 a2 (sin2 a, - a, a2), 
h 

and 

D = p 2  (sin a2 cos a2 - a,) (sin2 a, - a:) - p, (sin a, cos a, - a,) (sin2 a2 - a;). 
(2.9) 

These stresses have a singularity a t  r = 0, and the force on the boundary, if 
deduced from them, would be infinite. 

The similarity solution just obtained has a two-fold importance when an 
attempt is made to remove the singularity at the origin by means of a slip coeffi- 
cient. It represents the behaviour of the outer flow in the region of the contact 
line. Any possible eigensolution proportional to rh, say, need not be considered, 
since if h > 1 the forced solution dominates the eigensolution as r+O, while 
solutions with h < 1 are inadmissible because they give a singular velocity as 
r+O. The similarity solution also gives the outer boundary condition for the 
inner flow. 

To determine the flow when the slip conditions (2.4) are applied, we can write 

TI = Ur4,(p,@, y, = Ur42(p,8), (2.10) 

P = ln(r/c2), (2.11) 

where 

and 4, and d2 satisfy the new form of (2.l) ,  

[ ( g + 1 ) 2 + g ]  [(;-l)2+&] 4 = 0. (2.12) 
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The boundary conditions (2.2) and (2.3) are unaltered in 
replacing Y, and Y,, but the slip conditions (2.4) become 
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form, with 4, and 4, 

(2.13) 

where c" = c,/c,. In  order that the inner solution should match with the outer 
solution we must have 

91(Q 8) = 41(Q 4 2 @ t  6') = $ 2 ( 0  (2.14) 

where $l and $, are given by (2.6), and to ensure that the stress is finite at the 
origin we must have 

4l(P, 6') = O(e% M P ,  6') = O(ep)  as P+ - (2.15) 

The solution of this set of equations can be formulated as a pair of integral 
equations for the stresses on the boundary, which are the quantities of chief 
physical interest. We first introduce a two-sided Laplace transform 

(2.16) 
J --m 

(the conditions imposed on 4, and $2 as IpI -too ensure that their transforms 
exist for 0 < Re (s) < 1).  Solutions of the transform of (2.12) which satisfy (2.2) 
are 

esp {Aj sin so sin (8 - ai) + Bi sin 8 sin s(6' - aj)} ds, j = 1,2, 

(2.17) 

where 0 < B < 1, and A,, A,, B, and B, are functions of s to be found. 
If we write the tangential stresses at the boundary as 

71 = ~1 Ur-%(p), 7 2  = p2 Ur-lE2(~) ,  (2.18) 

for the two portions 6' = a, and 6' = az respectively, and if the transforms of kl 
and k, are denoted by 1, and k ,  respectively, the values of the coefficients in (2.17) 
and (2.21) can be found in terms of 1, and 1, by using (2.3). The tramforms of the 
boundary values of &$,/a6' and 8#@6' can then be determined, also in terms of 
&, and 1,. The inversions of these transforms can then be written as convolution 
integrals, and we finally obtain, from the boundary conditions (2.13), the integral 
equations 

J --m 
r m  
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where 
1 

~ ( p )  = (sin 2sa, - s sin 201,) (sin 2sa, - s sin 2a,) as, 

M,(p) = A 1"' (cos 2sa, - 1 - s2 cos 2a, + s2) (cos 2sa1 - cos 2a,):ds, 
2nz 2sA 

N(p)  = -. - (sin sa, cos a, - s sin a, cos sal) (sin sa, cos a, 
2nz 2sA 

- s sin a2 cos sa2) ds, 
l s esp 

A = p1 (cos 2sa, - cos 2a,) (sin 2sa, - s sin 201,) 

and the integrals are taken from e - ico to E + ico. 
-p,(cos 2sa, - cos 2a,) (sin 2sa, - s sin 2a,), 

The asymptotic values of k, and k, as IpI +cc are given by 

k, (p)  N eP/6, k,(p) - e p  as p-f - 00, 

k,@) = $1, k:,(a) = $2, 

where f1 and $, are given by (2.8). If we write &(r) and F,(s) for the forces on a 
unit width of the boundary, in the direction opposing the motion of the boundary 
relative to the interface, we have 

f : ( r )  = J:Tldr = pI u (2.27 a )  

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27b) 

and for large r/c2 we can write 

Since f ,  and 8, are known already, the main results to be obtained from the solu- 
tion of (2.19) are the values of h, and h,. 

Although a numerical solution of (2.19) could be obtained for any set of values 
of the parameters a,, ,u1/,u2 and c1/c2, it  does not seem to be feasible to make any 
simplification of (3.19) in the general case. There are, however, two special cases 
for which the coupled integral equations can be reduced to uncoupled equations, 
and these simpler cases are described in the following two sections. 

3. A gas-liquid interface 
An important special case of the general class of motions under consideration 

is when one of the two fluids is a gas. The small viscosity ratio permits the force 
on the portion of the boundary in contact with the liquid to be calculated by 
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ignoring the motion of the gas. It we set pz = 0 in the analysis of 3 2 and, without 
loss of generality, let c1 and c2 be equal, we obtain the single equation for the 
stress k, in the form 

1 - e-p k,(p) = 1 O0 ~ , ( p  - p ' )  kl(p') W ,  (3 .1)  
- W  

where L, is the value of ,ul L, as defined by (2 .20)  withpu, = 0, and is given by 

1 E+iw sin 2sa, - s sin 2 a  
esp as. 

2s (cos 2sa1 - cos 2a1) L1(p)  = .niJ-6-$w 
This integral can be reduced to the simpler form 

which can then be evaluated in terms of elementary functions if a1 is a rational 
fraction of n. 

The kernel of the integral equation (3 .1)  has a logarithmic singularity at 
p' = p. Before attempting a numerical solution of the equation, it is convenient 
to remove this singularity by writing the equation in the form 

1 -e-pk,(P) = S_-wmLl(P-P'){kl(P') - k1 (P) }dP '+4 (P)1 "  - w  L,(P-P')dP'- 

(3 .4 )  
It follows from (3 .2)  that 

m 2a1 - sin 2a,  - f-l 

so that (3 .4 )  becomes 

(3 .5 )  

I ,  

1 - (e-P + fa kl(P) = 1 O0 Ll(P -P ' )  P A P ' )  - W ) )  dP'. (3 .6 )  
- w  

The integral in (3 .6)  tends to zero as 1/11 +00, so that 

k1(p) N e p  as p-f - 00, kl(co) = El, (3 .7 )  

in agreement with the general results (2.25) and (2 .26) .  The value of 6, in (3.5) 
agrees with that obtained from (2 .8 )  with p2 = 0 .  

The numerical method used for the solution of (3 .6 )  was to d e h e  the unknown 
function by its values at  a set of equally spaced points, in a finite interval from 
- 5 to 5 or from - 10 to 10, and to evaluate the integral using the midpoint rule. 
The resulting set of linear equations for the function values was solved by Gauss- 
Seidel iteration. Convergence was quite rapid, about 15 iterations being required 
to reduce the residuals to 10-5. The value of the integral in ( 2 . 2 7 ~ ~ )  could then be 
found and the value of the coefficient h, in the expression (2 .28a)  for the force on 
the boundary could be estimated. Some values of f, ,  given by (3 .5 ) ,  and of h,, 
determined by the above numerical procedure, are given in table 1 for various 
values of the contact angle al, 

A check on the numerical method is possible for a1 = in, when the integral 
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4.. 
0-05 
0.1 
0.2 
0.25 
0.5 
0.75 
0.8 
0.9 

21 

19.04 
9.424 
4.522 
3.504 
1.273 
0.3501 
0.2312 
0.0612 

TABLE 1 

hl 

- 56-33 
- 21.55 
- 7.416 
- 4.334 
- 0.1476 

0.6944 
0.8398 
0.6300 

An alternative method was used in part 1 to solve this particular case. Cartesian 
co-ordinates were used, 2 being measured along the interface and y along the 
boundary, and the solution was found by means of a Fourier sine transform in y. 
From the solution obtained in part I, we can deduce, in the present notation, and 
with the sine and cosine integrals defined as in Abramowitz & Stegun (1965, 
p. 231), that - 

OD e p  sin ( s e p )  2 ds = - ep{Ci (=&ep) sin (4e-P) - si (4e-P) cos ($ep)}, (3.9) 
7T 

which is, therefore, the solution of (3.8). Moreover, from this analytic solution we 
can deduce the value of h,: 

h, = (417~) (y-ln2). (3.10) 

Simple forms for the kernel of (3.4) can be obtained only for special values of 
a,. For a, = &r, the values of L, and &,, as given by (3.3) and (3.5) respectively, 
are 

El = 4/(n - 2), 
and for a, = $T, 

L 1 = s  ( I -3 e-P’3 I + Q sech Qp}:, 

(3.11) 

(3.12) 

(3.13) 

= 4/(3n+ 2). (3.14) 

For values of a, close to 0 and to n, approximate values of the kernel can be found. 
With a1 = n/3 and /3 small, we have 

$1 = 3/(P.), (3.16) 

and the f i s t  three values in table I were calculated using this approximate kernel. 
Since the kernel is very small except when IpI is close to zero, an approximate 
solution can be obtained by setting the right-hand side of (3.6) equal to zero, 
thus obtaining 

k,(p) = (e-p + QnP)-l, (3.17) 



A moving @id interface. Part 2 217 

and hence, for small a1, 

h, - -"(E). a (3.18) 

The values of h, obtained by using this formula are identical, to the accuracy 
given, with the values shown in table 1 for al/n = 0.05 and 0.1, while, for 
al/n = 0.2, (3.18) gives h, = -7.464, compared with h, = - 7.416 from the 
numerical solution. 

For values of a, close to n, we write a, = n(1 -/3), and the approximate values 
of L, and El are 

-4 = (2n)-l[exP(-plPl)/(2/3) -w- exP(- lPl)>l, (3.19) 

i1 = 2np,  (3.20) 

which were used to calculate the last two entries in table 1. Since the values of h, 
appear to pass through a maximum as a, is increased towards n, an estimate of 
the behaviour of h, as a, approaches n is desirable, particularly as the slow varia- 
tion of the kernel makes numerical computation increasingly difficult in this 
limit. 

Although the second term in the kernel (3.19) is logarithmically infinite at 
p = 0, whereas the first term is bounded, the second term can be neglected for 
small /3. It is of comparable magnitude to the first term only when 

IPI < exp ( -  1/2/3), 

W-l exp ( - vw), 
and the contribution to the integral in (3.1) from the second term over this range 
of p is 

which is negligible compared with the O(p-1) contribution from the first term 
over the whole range of the integral. It is therefore possible to find the asymptotic 
solution for small /3 by solving the integral equation 

(3.21) 

which can be done as follows. 
We first take a two-sided Laplace transform, with the constant term in (3.21) 

replaced by exp (-€]PI), where 6 is a small positive constant. The transformed 
equation is 

1 1 
kl(S) = - -- 

s+s s - € '  
1 

El(s + 1) + 24/32 - S2) - (3.22) 

Similar functional equations can also be obtained for arbitrary angles a,. The 
only other case, however, in which a solution could be found was the special 
case a, = Jn, for which the solution was already known. 

To obtain the solution of (3.22), we take p < 0 and examine the poles of k,(s) 
in Re s > 0. There must not be a pole a t  s = s, else k, would tend to a constant as 
p-+ - CQ, in contradiction to (3.79, but there are poles a t  s = n+c,n = 1, 2, ... . 
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When the transform is inverted, these poles contribute to a particular solution 
for k,: 

(3.23) 

The poles a t  s = n k ,8 produce the complementary function, which can. be written 
as 

kc = e-p[AIZ1{(2/n)* e4f}+BLZB{(2/n)~ e)~}], (3.24) 

where A and B are constants, but we can immediately set B = 0, since otherwise 
the stress would be singular asp -+ - 00. If we introduce a new variable x, defined 

(3.25) x = (2/n)+e)p, 
by 

we obtain 

(3.26) 
(Qx)2” ( - p) !  p! 

(m-P) ! (m+P)!  
k, = kp + kc = Qnx2 

and the arbitrary constant A can be determined by the condition 

It is not difficult to show that 
kl(OO) = El = 2nB2. (3.27) 

which is the required solution of (3.21). The force on the boundary can then be 
found, and, making use of standard properties of the Bessel functions, we obtain 
the asymptotic form of h, as a,+n: 

h, - 2(n-a,) -(2/n)(In(%) -2y)(n-aJ2.  (3.29) 

The decreasing values of h, at the end of table 1 are confirmed and we have also 
shown that h,+O as ccl+n. For a, = @9n, the value of h, given by (3.29) is 
0.5854, whereas the calculated value given in table 1 is 0.6300. 

For values of a, which are not close enough to either 0 or n for these approxi- 
mate kernels to be used, the kernel must first be determined by the evaluation of 
(3.3). This can be done explicitly if a& is a simple fraction, but, in general, the 
numerical procedure would be complicated by the necessity for a numerical 
evaluation of the kernel. 

4. Normal contact 
A second case in which the integral equations of § 2 can be uncoupled is when 

the interface has a contact angle of in and when, in addition, the slip coefficients 
c1 and c2 are equal. With a, = &r and a2 = - Qn, the integral equations (2.19) can 
be written as 
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the integral equations uncouple and become 

m 

-m 

(4.3) 

(4.4) 

(4.5) 

The first of these equations is identical with the equation obtained in $ 3 for a 
gas-liquid interface with a contact angle of in ,  and its exact solution was given 
there [see (3.8) and (3.9)]. The second equation can be written as 

n-2-4 
I- (T+e-P) kb(p) = l :Lp(p-p’)  -&(p-P’))ikb(p’) -kb(Pf)dp’,  (4.7) 

and a numerical solution can be obtained by the method described in $3. 

grals of ku and kb. Extending the notation introduced in (2.28), we write 
To find the forces on the two parts of the boundary, we first evaluate the inte- 

where c is the slip coefficient. From the solution of (4.5) already obtained in $3, we 
have 

The values of hb and E ,  can be found from the numerical solution of (4.7) and from 
the asymptotic value of kb(p) as p --f co, and we find 

f b  = 4n/(n2-4) = 2.141, hb = - 1639. (4.10) 

The values of the coefficients in the expressions (3.28) for the forces on the 
boundary are then given by applying relations (4.5), so that we obtain 

,&a = 4/7r = 1.273, hu = (4177) (7- ln2) = -0.1476. (4.9) 

For a water-air interface, with the viscosity ratio pl/p2 = 100, say, we have 

El  = 1.290, h, = -0.1752, (4.12 a) 

E2 = 2.992, h2 = -2.903. (4.12 b )  

In  these results, the motion of the air is not neglected. The corresponding results 
for the part of the boundary in contact with the water when the air motion is 
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neglected were found in $ 3  and are given by (4.9). The large change in the value 
of h, is due to the value of h, being an order of magnitude larger than ha. 

5. The outer region 
The equations governing the outer region are the Navier-Stokes equations, 

together with the no-slip boundary condition. For two-dimensional motion, 
either plane or axisymmetric, the contact line is perpendicular to the flow plane, 
and the similarity solution (2 .10)  holds as the contact line is approached. The 
stresses on the boundary near the contact line have the asymptotic form 

where r is measured along the wall from the contact line. The force per unit length 
of the contact line on a section of the boundary from r = rm to r = R, where rm is 
small compared with the length scale a of the outer region but large compared 
with the slip coefficient, can be written as 

fi  = P1 m 1  In (alrm) + H,(rm, m1, (5 .2a )  

= P, u[f, ( a / r m )  + ~2 ( rm,  R)I, (5 .2b)  

where H, and H, are regular as rnk+ 0. If we now add the contribution to the 
force from the inner region, from r = 0 to r = r,, as given by (2 .28) ,  we obtain for 
the leading terms of the total force on the boundary 

E; = ti +fli = P1 U[E,  In +h, +H,(O, R)1, 

F2 = fg +fi = p, U[&,ln (+,) + h, + H,(O, R)]. 

(5.3a) 

(5.3b)  

Problemsinvolving two fluids with an interface are not easy to solve, even when 
the overall Reynolds number is small. One example which can be solved is that 
of two fluids between parallel plates or in a pipe, with the interface spanning the 
cross-section. Solutions of these problems have been obtained by Bataille (1966) 
and by Bhattacharji & Savic (1965), but only with the added restrictions that 
the interface remains plane and that the dynamics of the fluid on one side of the 
interface can be neglected, as for a liquid-gas interface. Parallel-plate flow, under 
these restrictions, but with a slip coefficient, was examinedin part 1, and the force 
on the bounding plates was obtained. The extension of this result to fluids of 
arbitrary viscosity, but with the contact angle still equal to in, is the subject of 
Q 6, and the corresponding results for pipe flow are in Q 7. Since the values of L,, 
f,, h, and h, for a contact angle of &r are given in Q 4, all that is needed to evaluate 
the force on the boundary are the values of H, and H, and the velocity U of the 
interface. 
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6. Parallel-plate flow 
The two-dimensional, low Reynolds number flow of two fluids between parallel 

plates can be formulated as follows. Non-dimensional Cartesian co-ordinates x 
and y are used, where xis measured normal to the plates and y parallel to them, as 
shown in figure 2 .  The half-width a of the gap between the plates is the unit of 
length, so that the plates are given by x = & 1, and the plane interface is at  y = 0. 
The reference frame moves with the interface, so that the plates have velocity U 
relative to the interface in the + y direction. The viscosity of the fluid in y > 0 is 
p1 and the stream function there is Yl, and pz and Yz are the corresponding 
quantities in the region y < 0. Both stream functions satisfy the biharmonic 
equation 

(6 .1)  

and the boundary conditions 

v 4 ~  = p21ax2 + az/ayz]z Y = 0, 

Y = 0, aY/ax= -77 at x = k l .  (6 .2 )  

Y, = Y, = 0, ayllay = ayPz/ay, p1az~llay2 = , u ~ ~ z Y , / ~ Y ~ .  (6 .3)  

Y,,Yz N g l ( X - X 3 ) .  (6-4) 

The matching conditions a t  the interface y = 0 are 

The asymptotic values of the stream functions as 1 y I + 00 are 

In  a frame a t  rest relative to the plates, both fluids have the usual parabolic 
velocity profile at large distance from the interface, with a mean velocity equal to 
U .  

The problem can be split into two subsidiary problems in terms of two new 
functions, which are respectively odd and even in y, We write 

( 6 . 5 ~ )  
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The odd function $ is defined in y > 0 by 

and the even function x is defined in y 2 0 by 

I v4x = 0, 

x( * 1, Y) = ax( f 1, !/)/ax = 0, 

x(x,co) = 0. 

x(x ,  O + )  = +(x3-x), ax(x, o+)/ay = 0,  

The value of $ can be found by taking a Fourier sine transform 

and the solution is 

(6.9) 
m x3 - x x sinh s cosh sx - cosh s sinh sx 

s (sinh s cosh s - s) 
4 =?I sinsy[T- ] ds. 

T o  

To evaluate the stress on the boundary x = 1 we need to find a2$/ax2 there, and 
from (6.9) we have 

T B  sinh s cosh s - s 
(6.10) 

There is no pole at s = 0,  and the other poles in the upper half-plane are a t  
s = is,, iZn (the bar denotes a complex conjugate), where s, has positive real and 
imaginary parts, 

sin%, = 2sn, (6.11) 
and for large n 

s, N (n+ 2)n + +iln((4n+ 1) T}. (6.12) 

The integral in (6.10) can be evaluated by summing the residues at the poles in 
the upper half-plane, and we have 

m 

n = l  
= - 2  3 [exp(-s,y) + exp(-Z,y)]. (6.13) 

If the series is integrated from y = yo to y = co, and we then let yo -+ 0,  the series 
diverges. To avoid this singularity, we write 

2 2 

S n  Sn 
- - exp ( - s, yo) - T exp (4, yo)) , (6.14) 
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from which we obtain 

The asymptotic value of sn, given in (6.12), shows that the series converges, and 
the sum was found numerically after the roots of (6.11) had been determined by 
Newton iteration, with the asymptotic values as initial approximations to the 
roots. The contribution of the odd part of the complete solution to the force on the 
boundary can be found by adding to (6.15) the appropriate result for the inner 
region, given by (4.9), with r = ayo. The force per unit length of the contact line in 
the direction opposite to the motion of the plates is 

(6.16) 

Since + decreases more rapidly than e--3Y as y -+ co, this result will also hold for a 
finite length of the plate, unless this length is less than the gap between the plates. 

The solution of (6.7) is not so straightforward. A cosine transform, 

(6.17) 

(6.18) 

and the solution can be written as an integral by variation of parameters. After a 
considerable amount of manipulation, and when the transform has been inverted, 
we obtain 

x =  
W 1 

n=l 0 
xp (-s,y) Un(x)/ S(x ' )  U,(x')dx'+complex conjugate (c.c.), (6.19) 

where 
cos s, sin s, x - x cos s, x sin s, 

un(x) = s, sin4 s, Y 
(6.20) 

and s, is a root of (6.11). The boundary condition on y = 0 can now be used, and 
we end with an integral equation for S: 

: U,(x) lo1 S(x')  Un(x') dx' + C.C. = x3 - x. (6.21) 
n=l 

The stress on the boundary can then be found in terms of 8, since we have 

(6.22) 

Although this appears to be the most satisfactory form of the problem, the 
numerical solution of (6.22) did not prove to be straightforward. An alternative 
method is to note from (6.19) that the solution can be expressed in the form 

W 

x = 3 Z exp (-s, y) ansn U,(x) + c.c., (6.23) 
n=l 
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so that (Un(x)} forms a, complete set of eigensolutiom for the problem, satisfying 
the four conditions at x = & 1. The boundary conditions on y = 0 give 

00 + X an sn U,(x) + C.C. = Q(x3 - x), 
n= 1 

rn 

~I :ans ;Un(X)  +c.c. = 0, 
n=l 

(6 .24~)  

(6.24 b) 

and if we multiply these equations by sin m7rx (m being a positive integer) and 
integrate from - 1 to + 1, we obtain two infinite sets of equations for the co- 
efficients: 

(6.25 a)  
3 W x Snan ,+c.c. =- 

n=l (&-m 7r ) ( m ~ ) ~ ’  

(6.25b) 

These equations were truncat,ed at m = n = 50 and solved. The force on the 
boundary from y = yo to y = cc is proportional to 

m a22 W 

dy = x an exp ( -  s, yo) + c.c. S, ~ 1 z - l  n=l  
(6.26) 

This quantity was evaluated for small values of yo and extrapolation to yo = 0 
gave the value 

(6.27) 

Combining this result with the contribution from the inner region, we have, for 
the force on the boundary corresponding to the even part of the solution, 

4 F, = p1 u ( x4 In (z) - 4.18) . (6.28) 

This result, also, will hold for a finite length of the plate unless this length is less 
than the gap between the plates. 

The contribution of the first term of (6.5) to the force is proportional to the 
length I of pipe, measured from the interface, and we finally have the result that 
the force per unit length of the contact line on a portion of the plate of length I ,  in 
contact with the fluid of viscosity p,, in the direction of the motion of the inter- 
face, is 

while the force on a length I ,  of the plate in contact with the fluid of viscosity ,u2 is 

~ 2 = , u 2 ~ [ ~ - , u ~ z ( ~ l n ( ~ ) - 2 . 1 8 ) + ~  ,a ,ul+P2 7r rUl+P2 ( ~ l n ( ~ ) - 4 - 1 8 ) ] .  7r2-4 
(6.30) 
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7. Pipe flow 
The axisymmetric analogue of the parallel-plate flow of $ 6  is flow in a pipe of 

radius a. The configuration is again as sketched in figure 2, which now represents 
a cross-section through the axis of the pipe, x being measured radially outwards 
from the axis. The stream functions in the two regions on either side of the inter- 
face y = 0 satisfy 

and the boundary conditions 

Y =  0, x-laY/ax=- U on X =  1. (7.2) 

In  addition, the velocity must not be singular on the axis. The matching condi- 
tions (6.3) at the interface are unchanged. The asymptotic values of the stream 
functions as IyI -too are now 

Yl, Y2 N g 7 ( X Z - X 4 ) .  (7.3) 

Subsidiary functions $ and x can be defined as before, the only alteration to 
(6.5) being a change in the f i s t  term from the value of the stream function at 
large I yI given by (6.4) to that given by (7.3). The odd function $(x, y) is defined 
by 

(7.4) i 
D4$ = 0, 

$ ( l , Y )  = aw,Y)/ax = 0, $(O,Y) = a$(o,Y)/ax = 0, 

$(x,O+) = 4(x4-x2), a2$(x,o+)/ay2 = 0, 

$(x,m) = 0, 

and can be found by means of a Fourier sine transform. The solution is 

The stress on the boundary x = 1, y > 0 is 

and from (7.5) we have 

where the ern are the roots with positive real and imaginary parts of the equation 

The determination of the force on the boundary and the treatment of the 
singular part follow the same lines as were explained in $6, and when the 

15  F L M  79 
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contribution from the inner region is added, we have for the force per unit length 
of the contact line in the direction opposing the motion of the pipe boundary 

= up1 (+ (E) - 1.90). 

The even part of the solution is d e h e d  by 

D4x = 0, 

X(1,Y)  = ax(l.,Y)/ax = 0, X ( 0 , Y )  = ax(o,Y)/ax = 0, 

x ( x ,  0) = +(x“ -q, ax(%, O p Y  = 0, 

x(x,co) = 0. 

Similar analysis to that used in tj 6 produces the result 

(7.9) 

(7.10) 

(7.12) 

and the cn are the roots of (7.7). Since {V, (z)} thus forms a complete set of eigen- 
solutions, we can, as in $6, write 

m 

x = 3 +exp(-rny)xbnV,(x) +c.c., (7.13) 
n = l  

and the boundary conditions at y = 0 then give 

m 

SbnxV,(x) +c.c. = x4-x2, 
n = l  

m 

n= 1 
zbngnzV,(x) +c.c. = 0. 

(7.14 a) 

(7.14 b) 

These equations can be multiplied by J,(j,z), where thej, (m = 1,2, .. .) are the 
positive roots of 4,(j) = 0, and integrated from 0 to 1 to give the two infinite sets 
of equations for the coefficients: 

(7.15a) 

(7.15b) 

Anumerical solution of these equations, and the value of the force on the bound- 
ary, can be obtained as described in $6,  and when the contribution from the 
inner region is added, we have for the force on the pipe boundary per unit length 
of the contact line 

(7.16) 



A moving Jluid interface. Part 2 227 

4. PIiFZ 
10-8 1 

2 
10 

100 

1 
2 
10 
100 

10-6 

el  
2.53 
2.26 
1.87 
1-74 

6.23 
5.46 
4.34 
3.97 

TABLE 2 

e2 

2.53 
2-80 
3-19 
3.32 

6.23 
7.00 
8.12 
8.49 

Adding the appropriate multiples of and F, together, and including the 
contribution from the flow a t  large distances from the interface, we have, finally, 

(7 .17~)  
and 

(7.17 b )  

for the forces on lengths I, and I, of the pipe in contact with the fluids of viscosity 
pI and pz respectively. These forces are in the direction of motion of the interface. 

(7.18a, b )  

e, and e2 measure the effective increases in length of the two sections of the pipe, 
measured in units of the pipe radius. Values of e ,  and e,, calculated from (7.17), 
for four values of the viscosity ratio and two values of the slip coefficient are 
given in table 2. For a tube of radius lo-, m, the larger value of c/a is of the size 
expected when the roughness of the pipe wall is of order m, and the smaller 
value is closer to the value which might be expected if slip takes place because of 
events on a molecular length scale. 

For the larger value of the slip coefficient, these results indicate that for slugs 
of fluid of length large compared with the pipe radius the additional contribution 
to  the resistance emanating from the interfaces between the fluids is not signifi- 
cant, although the extra resistance is infinite if there is no slip. Only for the 
smaller value of the slip coefficient, and for lengths up to 100 radii, is the effect of 
the interface on the resistance likely to be a measurable quantity. This is perhaps 
why serious errors have not been introduced when no consideration has been 
given to the presence of a fluid interface. For pipe flows, the area of contact 
between solid and fluid is large compared with the cross-sectional area of the 
pipe, and the contribution to the resistance from the vicinity of the contact line 
is relatively unimportant. The interface may play a more significant role in 
flows which do not contain such a large area of contact. A n  example is the motion 
of a drop on an inclined plane. 

If we write 
Fl = Snp, U[Z, + el a], F, = 87rp, Url, + e2 a],  

15-2 
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The flow produced by a closely fitting piston in a pipe also has a force singu- 
larity, at the contact line between the face of the piston and the pipe wall. 
Although there is no longer a fluid interface present, the solution can at once be 
written down from the analysis already presented. If the face of the piston is at 
y = 0 in a frame moving with the piston at speed U, and if the fluid, of viscosity 
,ul, is in the region y > 0, the stream function satisfies conditions (7.10). Hence 
the value of the force on a portion of the pipe of length I is, from (7.16), 

In (alc) - 4-66). 
41 47r 

If, as before, we write this force as 

Fp = 8np, U(l+e,a), 

(7.19) 

(7.20) 

the length of the column of fluid is effectively increased by ep a, where 

ep = 2-53 if c / a  = ep = 6.23 if c/a = lo4. 

Numerical solutions of the transition from plug to tube flow in a pipe have 
been obtained by Wagner (1975). His calculations cover a wide range of Reynolds 
numbers, and for low Reynolds numbers he finds that, in terms of the axial pres- 
sure drop along the tube, the effect of the transition is equivalent to an increase in 
length of about 1- 1 a, where a is the tube radius. While recognizing that there is a 
singularity a t  the contact line, he states that the best results were obtained by 
treating the corner as a regular wall point. Since he does not calculate the force 
on the boundary, but only the axial pressure drop, his solution avoids the force 
singularity, and he does not need to calculate the flow in the vicinity of the contact 
line accurately. The values of ep calculated here show that Wagner’s solution for 
low Reynolds numbers would not give accurate values of the force needed to 
move the piston (anexact solution of the problem heposes, andsolvesnumerically, 
would give an infinite force, since the no-slip condition is applied). For large 
Reynolds numbers, Wagner’s value for the effective increase in length, as deter- 
mined from the axial pressure drop, is &a R e ,  where R e  is the Reynolds number, 
and the related extra force required to move the piston is much larger than the 
force which must be added because of the slip flow near the contact line, given by 
(7.19), which is independent of the Reynolds number. 

These two problems of the displacing of a fluid in a pipe by another fluid or by a 
solid piston and the expressions (7.17) and (7.19) for the forces on the boundary 
satisfy the requirement laid down by Dussan V. & Davis (1974) in their discussion 
of the proposal to remove the singularity in the force a’t a contact line by a slip 
coefficient. They state, “It is therefore essential that the solution of posed 
boundary-value problems containing slip coefficients be able to predict some 
measurable physical quantities before the imposed slip is taken as a reasonable 
description of the local boundary condition. ” 
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